首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2082篇
  免费   233篇
  2021年   22篇
  2018年   19篇
  2016年   27篇
  2015年   56篇
  2014年   46篇
  2013年   69篇
  2012年   87篇
  2011年   82篇
  2010年   66篇
  2009年   65篇
  2008年   54篇
  2007年   69篇
  2006年   59篇
  2005年   59篇
  2004年   57篇
  2003年   77篇
  2002年   66篇
  2001年   64篇
  2000年   60篇
  1999年   45篇
  1998年   18篇
  1997年   24篇
  1996年   22篇
  1995年   22篇
  1994年   21篇
  1993年   27篇
  1992年   46篇
  1991年   50篇
  1990年   60篇
  1989年   61篇
  1988年   60篇
  1987年   41篇
  1986年   45篇
  1985年   41篇
  1984年   37篇
  1983年   29篇
  1982年   37篇
  1981年   34篇
  1980年   25篇
  1979年   46篇
  1978年   32篇
  1977年   42篇
  1976年   35篇
  1975年   41篇
  1974年   18篇
  1973年   25篇
  1972年   28篇
  1971年   16篇
  1967年   15篇
  1966年   18篇
排序方式: 共有2315条查询结果,搜索用时 31 毫秒
51.
Pseudomonas aeruginosa is an opportunistic bacterial pathogen which is the leading cause of morbidity and mortality among cystic fibrosis patients. Although P. aeruginosa is primarily considered an extacellular pathogen, recent reports have demonstrated that throughout the course of infection the bacterium acquires the ability to enter and reside within host cells. Normally intracellular pathogens are cleared through a process called autophagy which sequesters and degrades portions of the cytosol, including invading bacteria. However the role of autophagy in host defense against P. aeruginosa in vivo remains unknown. Understanding the role of autophagy during P. aeruginosa infection is of particular importance as mutations leading to cystic fibrosis have recently been shown to cause a blockade in the autophagy pathway, which could increase susceptibility to infection. Here we demonstrate that P. aeruginosa induces autophagy in mast cells, which have been recognized as sentinels in the host defense against bacterial infection. We further demonstrate that inhibition of autophagy through pharmacological means or protein knockdown inhibits clearance of intracellular P. aeruginosa in vitro, while pharmacologic induction of autophagy significantly increased bacterial clearance. Finally we find that pharmacological manipulation of autophagy in vivo effectively regulates bacterial clearance of P. aeruginosa from the lung. Together our results demonstrate that autophagy is required for an effective immune response against P. aeruginosa infection in vivo, and suggest that pharmacological interventions targeting the autophagy pathway could have considerable therapeutic potential in the treatment of P. aeruginosa lung infection.  相似文献   
52.
53.
The signal produced by fluorescence in situ hybridization (FISH) often is inconsistent among cells and sensitivity is low. Small DNA targets on the chromatin are difficult to detect. We report here an improved nick translation procedure for Texas red and Alexa Fluor 488 direct labeling of FISH probes. Brighter probes can be obtained by adding excess DNA polymerase I. Using such probes, a 30?kb yeast transgene, and the rp1, rp3 and zein multigene clusters were clearly detected.  相似文献   
54.
55.
Rapamycin has been shown to extend lifespan in numerous model organisms including mice, with the most dramatic longevity effects reported in females. However, little is known about the functional ramifications of this longevity‐enhancing paradigm in mammalian tissues. We treated 24‐month‐old female C57BL/6J mice with rapamycin for 3 months and determined health outcomes via a variety of noninvasive measures of cardiovascular, skeletal, and metabolic health for individual mice. We determined that while rapamycin has mild transient metabolic effects, there are significant benefits to late‐life cardiovascular function with a reversal or attenuation of age‐related changes in the heart. RNA‐seq analysis of cardiac tissue after treatment indicated inflammatory, metabolic, and antihypertrophic expression changes in cardiac tissue as potential mechanisms mediating the functional improvement. Rapamycin treatment also resulted in beneficial behavioral, skeletal, and motor changes in these mice compared with those fed a control diet. From these findings, we propose that late‐life rapamycin therapy not only extends the lifespan of mammals, but also confers functional benefits to a number of tissues and mechanistically implicates an improvement in contractile function and antihypertrophic signaling in the aged heart with a reduction in age‐related inflammation.  相似文献   
56.
Ocean acidification is projected to inhibit the biogenic production of calcium carbonate skeletons in marine organisms. Antarctic waters represent a natural environment in which to examine the long‐term effects of carbonate undersaturation on calcification in marine predators. King crabs (Decapoda: Anomura: Lithodidae), which currently inhabit the undersaturated environment of the continental slope off Antarctica, are potential invasives on the Antarctic shelf as oceanic temperatures rise. Here, we describe the chemical, physical, and mechanical properties of the exoskeleton of the deep‐water Antarctic lithodid Paralomis birsteini and compare our measurements with two decapod species from shallow water at lower latitudes, Callinectes sapidus (Brachyura: Portunidae) and Cancer borealis (Brachyura: Cancridae). In Paralomis birsteini, crabs deposit proportionally more calcium carbonate in their predatory chelae than their protective carapaces, compared with the other two crab species. When exoskeleton thickness and microhardness were compared between the chelae and carapace, the magnitude of the difference between these body regions was significantly greater in P. birsteini than in the other species tested. Hence, there appeared to be a greater disparity in P. birsteini in overall investment in calcium carbonate structures among regions of the exoskeleton. The imperatives of prey consumption and predator avoidance may be influencing the deposition of calcium to different parts of the exoskeleton in lithodids living in an environment undersaturated with respect to calcium carbonate.  相似文献   
57.
58.
The Cape Gannet Morus capensis is one of several seabird species endemic to the Benguela upwelling ecosystem (BUS) but whose population has recently decreased, leading to an unfavourable IUCN Red List assessment. Application of ‘JARA’ (‘Just Another Red-List Assessment,’ a Bayesian state-space tool used for IUCN Red List assessments) to updated information on the areas occupied by Cape Gannets and the nest densities of breeding birds at their six colonies, suggested that the species should be classified as Vulnerable. However, the rate of decrease of Cape Gannets in their most-recent generation exceeded that of the previous generation, primarily as a result of large decreases at Bird Island, Lambert’s Bay, and Malgas Island, off South Africa’s west coast (the western part of their range). Since the 1960s, there has been an ongoing redistribution of the species from northwest to southeast around southern Africa, and ~70% of the population now occurs on the south coast of South Africa, at Bird Island in Algoa Bay, on the eastern border of the BUS. Recruitment rather than adult survival may be limiting the present population; however, information on the seabird’s demographic parameters and mortality in fisheries is lacking for colonies in the northern part of the BUS. Presently, major threats to Cape Gannet include: substantially decreased availability of their preferred prey in the west; heavy mortalities of eggs, chicks and fledglings at and around colonies, inflicted by Cape Fur Seals Arctocephalus pusillus and other seabirds; substantial disturbance at colonies caused by Cape Fur Seals attacking adult gannets ashore; oiling; and disease.  相似文献   
59.
Arsenic can be biomethylated to form a variety of organic arsenicals differing in toxicity and environmental mobility. Trivalent methylarsenite (MAs(III)) produced in the methylation process is more toxic than inorganic arsenite (As(III)). MAs(III) also serves as a primitive antibiotic and, consequently, some environmental microorganisms have evolved mechanisms to detoxify MAs(III). However, the mechanisms of MAs(III) detoxification are not well understood. In this study, we identified an arsenic resistance (ars) operon consisting of three genes, arsRVK, that contribute to MAs(III) resistance in Ensifer adhaerens ST2. ArsV is annotated as an NADPH-dependent flavin monooxygenase with unknown function. Expression of arsV in the arsenic hypersensitive Escherichia coli strain AW3110Δars conferred resistance to MAs(III) and the ability to oxidize MAs(III) to MAs(V). In the presence of NADPH and either FAD or FMN, purified ArsV protein was able to oxidize both MAs(III) to MAs(V) and Sb(III) to Sb(V). Genes with arsV-like sequences are widely present in soils and environmental bacteria. Metagenomic analysis of five paddy soils showed the abundance of arsV-like sequences of 0.12–0.25 ppm. These results demonstrate that ArsV is a novel enzyme for the detoxification of MAs(III) and Sb(III) and the genes encoding ArsV are widely present in soil bacteria.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号